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Summary

The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to mini-

mize the formation of nitrogen oxides (NO_) in gas turbine systems. The success of this com-

bustor strategy is dependent upon the efficiency of the mixing section bridging the fuel-rich and

fuel-lean stages. Note that although these results were obtained from an experiment designed to

study an RQL mixer, the link between mixing and NO_ signatures is considerably broader than

this application, in that the need to understand this link exists in most advanced combustors. The

experiment reported herein was designed to study the effects of inlet air temperature on NOx

formation in a mixing section. The results indicate that NO_ emission is increased for all pre-

heated cases compared to non-preheated cases. When comparing the various mixing modules,

the affect of jet penetration is important, as this determines where NOx concentrations peak, and

affects overall NOx production. Although jet air comprises 70 percent of the total airflow, the

impact that jet air preheat has on overall NO_ emissions is small compared to preheating both

main and jet air flow.
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Nomenclature

jet-to-mainstream density ratio

orifice axial height, or round hole diameter

average planar jet mixture fraction derived from carbon mass fraction

planar jet mixture fraction variance

jet-to-mainstream momentum-flux ratio = (pwZ)jets/(pU2)main

jet-to-mainstream mass-flow ratio

number of round holes in quick-mix module

radius of the quick-mix module
radial distance from the module center

average jet air temperature

average mainstream temperature

mainstream velocity
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spatial unmixedness

jet velocity

reference velocity

axial distance from leading edge of orifice

mass fraction of carbon

equivalence ratio = (fuel/air)mo_al/(fuel/air)stoi_hion_,tric

Introduction

Many processes involved in the injection of fuel and in the control of exhaust temperature

rely on jet mixing with a crossflow of gas to mix fluid streams. One particular application in

which jet mixing in a confined crossflow plays a fundamental role is the Rich-burn/Quick-

mix/Lean-burn (RQL) combustor. The success of this combustor in producing lower emissions

than conventional gas turbine combustors depends on the efficiency of the mixing section

bridging the fuel-rich and fuel-lean stages of combustion. In this combustor design, the jets of air

introduced into the quick-mix section should mix with the fuel-rich reacting crossflow as quickly

as possible to bring the reaction to an overall fuel-lean equivalence ratio. It is hypothesized that

rapid and spatially distributed mixing must occur in order to prevent the formation of hot pockets

(consisting either of closer to stoichiometric species concentrations, higher temperatures, or

both) which in turn drive pollutant formation.

Previous studies (refs. 1 and 2) involved the construction of a facility, and reported results for

reacting tests in cylindrical crossflow configurations at atmospheric pressure. The current study

expands upon this initial work by elevating the inlet air temperatures, testing various mixing

module designs and studying the species concentrations, with particular interest in NOx
formation.

Background

Numerous studies on the jet in crossflow problem have yielded insight on such flow field

characteristics as the jet structure and penetration, the development of vortices, the jet entrain-

ment of crossflow fluid, and the flow field distributions resulting from jet mixing. An extensive

listing of documented jet-in-crossflow studies performed in the past few decades can be found in

references 3 to 6. Note that many of the studies cited in these summaries are of a single jet in an

unbounded crossflow or are otherwise inappropriate for direct application. Although the single

jet is a key component in combustor flow fields, these flows are usually confined, and interaction

between jets is critical. Also, because the references listed in references 3 to 6 are extensive, only

those papers from which specific material is mentioned will be cited in this paper.

In previous studies (refs. 5 and 6), nonreacting experiments and modeling were often used as

convenient tools to explore the mixing of air jets into the fuel-rich cross stream. The primary

goal of these studies was to determine orifice configurations that lead to optimal mixing within a

specified duct length. In a cylindrical duct geometry, experimental surveys of the effect of the

jet-to-crossflow momentum-flux ratio and the shape, orientation, and number of orifices on

mixing were performed in order to gain a mechanistic understanding of jet penetration and mix-

ing dynamics (ref. 7). A systematic optimization scheme using a design of experiments statistical

approach was applied to the experimental data to determine the round hole configurations
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leadingto optimalmixing at variousmomentum-fluxratios.Forjet-to-mainstreammomentum-
flux ratiosof 36 and70, thenumberof roundholesleadingto optimal mixing wereidentified as
10and 15,respectively(ref. 8).

While extensivenonreactingconfinedjet mixing workhasbeenperformed(seerefs.3 to 6),
researchinto reactingflowshasbeenlimited. Testsonmultiplejet mixing in reactingflowshave
beenperformedon modelgasturbinecombustorsof a can-type,or cylindrical ductgeometry.In
manyof theseexperiments(refs.9 to 13),themodelgasturbinecombustorscontainedtwo sets
of holesfor primaryanddilution air mixing typicalof conventionalcombustors,asopposedto
thesinglestagequick mixing scheme.Thesestudieswerealsoconcernedwith varyingoperating
conditionssuchasfuel injection (ref. 9), air preheat(ref. 10),fuel-air ratio (ref. 11),or the
momentum-fluxratioof theprimaryjets (ref. 12).In onestudy,ageometricparameterization
waspursued,butwasrelatedto varyingthepositionsof therowsof theprimaryanddilutionjets
ratherthanwith changingtheorifice configurations(ref. 12).An experimentperformedona
modelRQL combustoroperatingat variouspressuresandinlet temperaturesdid yield NOxemis-
sionsmeasurementsfor a 20 roundholemixing section(ref. 13).Theresultsfrom thisRQL
studyalsoemphasizedthattheoptimizationof thequick-mixingsectionwasintegralto lowering
thetotalNOxemissionsfrom theRQLcombustor.Onthewhole,thesereactingtestsvaried
operatingparametersin orderto affectthedistributionsof emissionsandtemperature.

Archivaljournal publicationsof NO formationin theRQL concepthavebeenfew (refs. 13
and 14),however,theresultsof thesestudieshaveshownthat momentumflux ratioandorifice
configurationasbeingthe leadingfactorsin NOxformation.

Initial reactingflow experimentsstudiedby theauthorsincludedtheflowfield of arow of
jets mixing with rich reactinggasesconfinedto a cylindricalcrossflow(refs. 1and2).Thework
presentedhereexpandsuponthereactingflow investigationby usingthediagnosticandanalysis
techniquesdevelopedin thepreviousstudy.Theobjectivefor thisstudyis to examineorifice
configurationsthatdemonstratedoptimalmixing in previoustests,andvarythe inlet tempera-
turesto measuretheimpactthischangehason speciesconcentrations.

Experiment

Facility

The experimental facility used consisted of a premixing zone, a fuel-rich combustion zone,

and a jet-mixing section as shown in figure 1. In the premixing zone propane gas is mixed with

air upstream of the ignition point. Fuel-rich combustion occurs downstream of the quarl in a zone

stabilized by a swirl-induced recirculation zone. To dissipate the swirl in the flow and to intro-

duce a uniform nonswirling flow into the jet-mixing section, the fuel-rich product was passed

through an oxide-bonded silicon carbide (OBSiC) ceramic foam matrix (Hi-Tech Ceramics) with

a rated porosity of 10 pores/in.

The jet mixing section was comprised of a modular quartz section to which jet air is supplied

from a surrounding plenum. The plenum was fed by four equally-spaced, air ports located toward

the base of the plenum. A high-temperature steel flow-straightener installed in the plenum con-

ditioned and equally distributed, the jet air entering the mixing module.

To supply the necessary heated air, two recirculating heaters were utilized. The main-air line

and jet-air line were heated by a 20 and 25 kW heater, respectively. Each heater is capable of
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supplyingtherequiredmaximumof 260°C (500°F) air preheattemperatureatthedesired
flowrates.

Thequartzmoduleswhichcomprisedthejet mixing sectionwere280mm (11 in.) in length,
with innerandouterwall diametersof 80mm (3.15in.) and85mm (3.35in.). Therowof ori-
ficeswaspositionedwith its centerline115mm (4.5 in.)downstreamfrom themoduleentrance.
An alumina-silicablendof ceramicfiberpaperprovidessealingbetweenthequartzmoduleand
thestainlesssteelmatingsurfacesto form theair plenumfor thejets. Modulestestedwere8, 12,
14,and22-orificeconfigurations.

Measurements

The purpose of the present investigation was to examine the impact of air preheat on species

concentrations of 02, CO2, CO, HC and NOx. Species concentrations are obtained downstream of

the jet air injection plane.

Species concentration data were obtained in a sector grid for the plane at x/R - 1 (plane 5 in

refs. 1 and 2) for each module. The x/R = 1 plane is measured from the leading edge of the

orifices.

Each planar grid consisted of 16 points spread over a region that includes two orifices

(fig. 2(b)). The points include one point located at the center, and five points along each of the

arc lengths at r/R = 1/3, 2/3, and 1. The points along each arc are distributed such that two points

are aligned with the center of the orifices and three are aligned with the midpoint between orifice

centers for all cases.

Species concentration measurements are obtained by sampling through a water-cooled

stainless-steel probe by routing the sample through a heated line connected to the emission ana-

lyzers. Water was condensed from the gas before the sample is analyzed by chemiluminesence

for NO (nondispersed infrared) NDIR analysis for CO, and CO2, paramagnetic analysis for O_,

and flame ionization detection (FID) for total hydrocarbons.

Experimental Conditions

The experiments were performed for a jet-to-mainstream momentum-flux ratio (Jr) of 57 and
a mass-flow ratio (MR) of 2.5. The total effective area of the mixing module orifices is 9 cm"

(1.4 in._-). The ratio of the total effective jet area to cross-sectional area is 0.18. The rich equiva-

lence ratio and overall equivalence ratio are 1.66 and 0.45, respectively. The operating pressure

for the system is one atmosphere.

Various levels of preheat were applied to both the jet and main airflows. Inlet temperature

operating conditions for the experiment are noted in table I. The results show comparisons be-

tween non-preheated air, preheated jet air only, and preheated jet and main air cases.

Analyses

The jet mixture fraction was derived from conserved scalar calculations of the mass fraction

of carbon. As a step toward obtaining the carbon mass fraction at each datum point, the wet mole

fraction was calculated from the dry species concentration measurements. The wet mole frac-

tions were obtained by solving a system of eight linear equations for the measured dry species
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concentrationsof CO,CO2,02,andunburnedHC (assumedto becomprisedmainlyof unburned
C3H8), as well as for C_H4, H2, N2, and H20 (ref. 15). The inclusion of C2H4, which is a prevalent

intermediate species produced from the combustion of C3Hs (ref. 16) was necessary in order to

form a closed set of equations. The calculated unburned hydrocarbon species C3H8 and C2H4

contributed, at most, to 1.4 percent of the overall wet mole fraction at each point. The concentra-

tion of H2, a primary species of combustion produced under fuel-rich reactions, was assumed to

be 65 percent of the concentration of CO (ref. 15). N2 was assumed to make up the rest of the gas

concentration in the sample.

Results and Discussion

The NO× data are presented in the following sequence: (1) the effect of air preheat showing a

comparison of NOx emissions for each test condition, and (2) a comparison of the experimental

configurations (i.e., the various mixing modules) for each preheat test condition. The former will

show the general trends observed with all of the modules tested, and the latter will illustrate the

contrast between the mixing modules for a given test condition.

Effect of Preheat

The effect of heating the inlet air on the measured NOx values is illustrated in figure 3. Non-

preheated air data was collected as a baseline to determine the effect air preheat has on NO_, and

to repeat the (unpublished) experiments of MYL in 1997 to ensure experimental repeatability.

Mainstream measurements s of CO and CO2, 11 and 5 percent respectively, were virtually

unaffected by preheat, and were consistent with equilibrium values. NOx measurements were

also consistent with equilibrium calculations and were 2 ppmv without preheat, and 13 ppmv for

500 °F preheat. Due to the dilution through the mixing section, one would expect a NO_ concen-

tration of only 4 ppmv at the exit for mainstream preheat if no NO_ were formed in the mixer.

Most notable of the comparison between the preheated jet air case, and the preheated main

and jet air case of figure 3, is the small impact of preheated jet air on NOx. The jet air comprises

over 70 percent of the total airflow, but preheating jet air results in relatively small increases in

NO_ emissions compared to the main and jet preheated air case.

Figure 4 presents the corresponding NO_ distribution plots. These plots also show the effect

that jet penetration has on determining the locations for peak NO_ formation. Both the linear and

contour plots indicate peak NO_ formations occurring near the orifices of the module (in the

wakes of the jets).

The distributions of equivalence ratio are given in figure 5. Note that preheat has very little

effect on jet penetration, and that the equivalence ratio distributions (refs. 12 and 13)better

reflect the mixing than do to the NO_ distributions, as the latter are similar for each module.

To account more accurately for the overall effect of preheated air on NO_ formation for a

given case, area weighted averages were calculated. The overall effect of preheating only jet air,

and both main and jet air preheat on the production of NO_ is shown in figure 6. This figure

shows clearly that the affect of jet air preheat, with a NOx value of 16 ppmv (for the 14 hole

module), is relatively smaller than that of the main and jet air preheat case, with a NO_ value of

24 ppmv.
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Round Hole Module Comparisons

Overall Combustion Performance.--Figures 7 to 9 present the concentrations of 02, CO,

CO2 and hydrocarbons for the four modules that were tested (8, 12, 14, and 22 round hole mod-

ules) for no preheat (fig. 7), jet air preheat (fig. 8), and jet and main preheated air (fig. 9) condi-

tions. The corresponding distribution plots are shown in figures 10 to 12. In each case, the trends

are very similar and the differences that do exist are a result of jet penetration for that particular

module (see also fig. 5). The penetration of the jets for the 12 and 14 hole module cases is

observed to be different than that of the 22 hole module case as indicated by the flatness, or

smoothness, of the data. Similar measurements were observed for the non-preheat air condition

and the jet air preheat condition with relatively small differences in the major species concentra-

tions as shown in figures 7 to 12.

Jet Air Preheat.--Previous studies indicated optimal mixing configurations for round hole

modules (refs. 1 and 2). The current work compares the various modules for given experimental

conditions (nonpreheat, jet air preheat, and main and jet air preheat) to determine which modules

produce lower NOx emissions. The data presented in figures 13(a) to (c) were obtained for the jet

air preheat experimental condition and shows that the various modules have similar overall NOx

performance. Similar spatial distributions of NOx are observed for each module with the excep-

tion of the center region where the 14 round hole module shows slightly higher NO× emissions.

This difference is illustrated in the area weighted average chart (fig. 13(c)) with the 14 round

hole module producing slightly higher NO× than the 12 and 22 round hole module cases. It

should be noted that the differences are only 2 to 4 ppmv.

Main & Jet Air Preheat.--The results of the main and jet air preheat experimental condi-

tions are similar to the jet air preheat results. The data for each module, figures 14(a) and (b),

follow almost identical paths with the exception of the 22 round hole module. In this case, the

NO_ seems to be a little less near the center region. This may be due to the fact that the 22 round

hole module is considered a very overpenetrating mixing module, and thus may have lower NO_

formation in this region.

The overall effect of main and jet air preheat experimental conditions is presented in figure

14 showing a slightly different trend than the jet air preheat case. The data indicates that the t2

round hole module has highest NO_ concentrations compared to the 14 and 22 round hole mod-

ules. As with the jet air preheat cases the difference between the largest and smallest overall NO_

emissions is only 3.5 ppmv.

Summary and Conclusions

An experiment was performed to expand upon earlier work by incorporating preheated inlet

air, and examining the effect it has on NOx production. The following was revealed in the ex-

periment:

Jet penetration determines where NO_ concentrations peak and affects overall NOx

production.

Jet air comprises over 70 percent of the total airflow, however the impact of preheating jet air
alone on overall NO_ emissions is small compared to preheating both main and jet air. This is

likely due increased sensitivity of NOx kinetics to increases in the fuel rich zone temperatures

leading to increased production of fixed nitrogen species.
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OverallNOxconcentrationvarieslittle with mixing configuration.However,thereis atrade-
off with COproductionespeciallyfor under-penetratingconfigurationssuchasthe22 round
holemodule.

Theseresultsshowthatpreheatingbothmainandjet air increasesNOxsignificantly morethan
preheatingonly thejet air. Also, thefourmixing strategiesinvestigatedshoweda smalldiffer-
encein overallNOxconcentrationalthoughtheseconfigurationsrangedfrom thosegiving under-
to overpenetratingjets.
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TABLE I.--OPERATING CONDITIONS

Description

Nonpreheated air

Jet air preheat

Main and jet air preheat

Inlet air temperature, °C

(OF)

22 (72)

260 (5OO)

260 (500)
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Figure 1. Schematic of Experimental Rich Product Generator with Quartz RQL module.
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